初中数学最难奥数题,初中数学最难奥数题及答案
大家好,今天小编关注到一个比较有意思的话题,就是关于初中数学最难奥数题的问题,于是小编就整理了4个相关介绍初中数学最难奥数题的解答,让我们一起看看吧。
中考数学压轴题难度是否达到奥数?
奥数,是奥林匹克数学的简称。它旨在考验学生的创新能力。如小升初时会考。而中考数学压轴题是对初中综合知识的应运考察。只要有良好的逻辑能力,就可以解出。两者不可同日而语。 建议你多做做中考数学压轴题,其实大部分都差不多。
最难的奥林匹克几何题?
1. 1977 年东欧数学奥林匹克题目(布尔加斯坦共和国)
三个正整数 $a, b, c$ 满足以下条件:
- $a+b+c$ 是质数。
- $a
- $ab+bc+ca$ 是另一个质数。
证明:$a$ 是偶数。
2. 1995 年国际数学奥林匹克题目(加拿大)
一个平面区域由一些点组成,这些点可以是三种颜色之一。证明:可以在平面上找到一个边长为 $1995$ 的正方形,它的四个顶点颜色相同。
3. 2006 年斯洛文尼亚国家数学奥林匹克题目
$n$ 是一个正整数,$a_1,a_2,…,a_n$ 是正整数序列且 $a_1 历史上最难奥数题: 设正整数a、b满足ab+1可以整除a2+b2,证明(a2+b2)/(ab+1)是某个整数的平方。 这是1988年国际数学奥林匹克竞赛的第6题,是公认的全世界最难的一道奥数题。这道奥数题由西德数学家精心设计,当时的澳大利亚数学奥林匹克议题委员会的六个成员未能解决。 圆内接四边形ABCD满足:AB,CD交于点Q,AD,BC交于点R,AC,BD交于点P。M,N分别为PR,PQ中点,MN分别交AR,AQ,BC,CD于X,Y,K,L。 求证:圆(AXY)与圆(CKL)相切。 目前最难的奥林匹克几何题是:三角形ABC是变长为3的等边三角形,三角形BDC是等腰三角形,且角BDC=120度。以点D为定点作一个60度的角,使其两条边分别交AB于点M,交AC于点N,连接MN,则三角形AMN的周长是多少。 奥数最难的版本是《明心数学zy教程》, 刘嘉编著,湖北教育出版社出版 。 《明心数学zy教程》这套书最大优点有:① 每一讲前面的数学经纬都非常的生动知有趣而且富有知识性; ②每一道例题的解答过程都非常详细,很适合家长用来辅导学生及学生自学,另外对于新老师的教学其实也有指导帮助的作用。 分为如下10种: 1.连续统假设。 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛–弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛–伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛–弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性。可归结为算术公理的相容性。 希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题。 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题。 此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群? 到此,以上就是小编对于初中数学最难奥数题的问题就介绍到这了,希望介绍关于初中数学最难奥数题的4点解答对大家有用。奥数最难的是什么版本?
数学老师都答不出来的奥数难题有哪些?