欢迎访问中学资讯网!

中学资讯网

您现在的位置是: 首页 > 初中知识点 >详情

初中知识点圆,初中圆知识点归纳总结

发布时间:2024-09-14 00:04:06 初中知识点 0次 作者:中学资讯网

大家好,今天小编关注到一个比较有意思的话题,就是关于初中知识点圆的问题,于是小编就整理了2个相关介绍初中知识点圆的解答,让我们一起看看吧。

初中圆七大定理?

初中圆知识点总结

初中知识点圆,初中圆知识点归纳总结

1、圆是到定点的距离等于定长的点组成的图形。

2、圆的内部可以看作是圆心的距离小于半径的点组成的图形。

3、圆的外部可以看作是圆心的距离大于半径的点组成的图形。

4、同圆或等圆的半径相等。

5、到定点的距离等于定长的点组成的图形,是以定点为圆心,定长为半径的圆。

6、和已知线段两个端点的距离相等的点,在这条线段的垂直平分线上。

7、到已知角的两边距离相等的点组成的图形,是这个角的平分线。

8、到两条平行线距离相等的点组成的图形,是和这两条平行线平行且距离相等的一条直线。

9、定理:不在同一直线上的三点确定一个圆。

10、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

11、推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等

13、圆是以圆心为对称中心的中心对称图形

14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆周角相等,所对的弦的弦心距相等。

15、推论:在同圆或等圆中,如果两个圆心角、圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

19、推论:3? 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(注:这是用来证明三角形是直角三角形的一种方法)

20、定理:? 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角(这个定理现在的书上没有)。

21、直线和圆的

切线定理

垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

2、切线长定理

从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

3、切割线定理

圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB

4、割线定理

从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。

5、垂弦定理

垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

6、弦切角定理

弦切角等于对应的圆周角。(弦切角就是切线与弦所夹的角)

圆的知识点?

考点1:圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点2:圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点3:垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点4:直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点5:正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点6:画正三、四、六边形

到此,以上就是小编对于初中知识点圆的问题就介绍到这了,希望介绍关于初中知识点圆的2点解答对大家有用。